All Posts Tagged With: "Francisella tularensis"

Tick-Borne Disease Agents in Various Wildlife

Excerpt:

Because tick-borne diseases are becoming increasingly important throughout the world, monitoring their causative agents in wildlife may serve as a useful indicator of potential human exposure. We assessed the presence of known and putative zoonotic, tick-borne agents in four wildlife species in Mississippi. Animals were tested for exposure to or infection with Ehrlichia chaffeensis, Ehrlichia ewingii, Borrelia lonestari, Rickettsia spp.,Anaplasma phagocytophilum, and Francisella tularensis

. Whole blood and serum were tested from white-tailed deer (WTD; Odocoileus virginianus) and feral swine (Sus scrofa); serum was tested from raccoons (Procyon lotor) and opossums (Didelphis virginiana). We used polymerase chain reaction to detect all agents in blood, whereas an indirect fluorescent antibody assay was used to detect antibodies to E. chaffeensis, B. lonestari, and Rickettsia parkeri (spotted fever group rickettsiae) antigens in serum.

pathogens in Ixodes ricinus ticks

Among the various species of hard ticks, Ixodes ricinus is the most frequently
found tick throughout Europe. As with other ixodid ticks, the developmental
cycle runs through three stages. In each stage a blood meal is required in order
to develop to the next stage. Ixodes ricinus has been found to feed on more than
300 different vertebrate species. Usually, larval ticks feed on small mammals
such as mice and become infected with various microorganisms and viruses, of
which some are substantial pathogens to humans. The pathogens remain in the tick
during molting and are thus transstadially transmitted to the next developmental
stage. Pathogens transmitted to humans are the agents of Lyme borreliosis, the
tick-borne encephalitis virus, Rickettsia species, Anaplasma phagocytophilum,
occasionally Francisella tularensis, and protozoal Babesia species. Within the
scope of an EU project Ixodes ricinus ticks from all federal states of Austria
were searched by means of PCR methods for bacterial pathogens such as Anaplasma
phagocytophilum, Borrelia burgdorferi sensu lato, Coxiella burnetii, Ehrlichia
spp., Francisella tularensis, Rickettsia spp., and protozoal Babesia.
Additionally, the prevalence of Bartonella spp. in this tick species was also
determined. Besides the singular detection of Coxiella burnetii and Francisella
tularensis in one tick collection site the overall prevalence of Anaplasma
phagocytophilum, borreliae, rickettsae and babesiae in Ixodes ricinus amounted
to 15%, 14%, 6% and surprising 36% and 51%, respectively. Bartonellae were
detected in about 7%.

pathogens in Ixodes ricinus ticks in Central Europe

Among the various species of hard ticks, Ixodes ricinus is the most frequently found tick throughout Europe. As with other ixodid ticks, the developmental cycle runs through three stages. In each stage a blood meal is required in order to develop to the next stage. Ixodes ricinus has been found to feed on more than 300 different vertebrate species. Usually, larval ticks feed on small mammals such as mice and become infected with various microorganisms and viruses, of which some are substantial pathogens to humans. The pathogens remain in the tick during molting and are thus transstadially transmitted to the next developmental stage. Pathogens transmitted to humans are the agents of Lyme borreliosis, the tick-borne encephalitis virus, Rickettsia species, Anaplasma phagocytophilum, occasionally Francisella tularensis, and protozoal Babesia species. Within the scope of an EU project Ixodes ricinus ticks from all federal states of Austria were searched by means of PCR methods for bacterial pathogens such as Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Coxiella burnetii, Ehrlichia spp., Francisella tularensis, Rickettsia spp., and protozoal Babesia. Additionally, the prevalence of Bartonella spp. in this tick species was also determined. Besides the singular detection of Coxiella burnetii and Francisella tularensis in one tick collection site the overall prevalence of Anaplasma phagocytophilum, borreliae, rickettsae and babesiae in Ixodes ricinus amounted to 15%, 14%, 6% and surprising 36% and 51%, respectively. Bartonellae were detected in about 7%. Continued